Electrical Properties of Oriented SnO, Thin Films

Masamitsu NAGANO

Department of Industrial Chemistry, Faculty of Science and Engineering, Saga University 1, Honjo-cho, Saga-shi 840

Electrical properties of (001) and (110) oriented SnO_1 films with SnO_1 crystallites oriented in the same direction as the rutile TiO_1 substrates, were investigated. The oriented films exhibited relatively low electric conductivities of 10^{-1} - 10^{1} Scm^{-1} (carrier concentrations of 10^{10} - 10^{10} cm^{-1} and mobilities of $0.3-16cm^{1}V^{-1}s^{-1}$) in comparison with polycrystalline films used as transparent conducting coatings. No anisotropy of the conductivity was noticeable in spite of the alignment of the SnO_1 particles along a particular crystallographic axis.

[Received October 7, 1985]

Gas Pressure Sintered Silicon Nitride Containing Praseodymium Oxide as Sintering Aid

Kazuo UENO

(Government Industrial Research Institute, Osaka) 8-31, Midorigaoka 1-chome, Ikeda-shi 563

 $Pr_{\bullet}O_{11}$ doped $Si_{\bullet}N_{\bullet}$, with or without simultaneous addition of other oxides were fired at 1900° - $2050^{\circ}C$ under 1 MPa N_{\bullet} pressure. In $Si_{\bullet}N_{\bullet}$ containing 15 mol% $Pr_{\bullet}O_{11}$, it was assumed that an oxynitride having a structure similar to that of $CeSiO_{\bullet}N$ is formed at grain boundaries, resulting in highly refractive ceramic without any strength degradation from room temperature to $1300^{\circ}C$. When sintered at above $2000^{\circ}C$, nearly full-dense $Si_{\bullet}N_{\bullet}$ was obtained with 7.5 mol% $Pr_{\bullet}O_{11}$ and 7.5 mol% $Y_{\bullet}O_{\bullet}$. The sample, having yttrium oxynitrides as grain boundary phases, showed a strength of over 800 MPa at room temperature and of 600-700 MPa at $1300^{\circ}C$. $Si_{\bullet}N_{\bullet}$ with 7.5 mol% $Pr_{\bullet}O_{11}$ and 7.5 mol% $Al_{\bullet}O_{\bullet}$ a indicated significant strength degradation at $1300^{\circ}C$.